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Outline
• Motivation

– Complex, multi-physics, multi-scale applications
– Distributed, multi-level memory hierarchies

• High-Performance Scientific Components
– What are components?
– Common Component Architecture (CCA)
– Center for Component Technology for Terascale

Simulation Software (CCTTSS)

• Parallel Components for PDEs and Optimization
– Approach
– Performance

• Ongoing Challenges
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Motivating Scientific Applications
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Target Architectures

• Systems have an increasingly deep memory 
hierarchy

• Time to reference main memory 100’s of cycles

SMP

Interconnect

CPUs

Cache

Main Memory

CPUs

Cache

Main Memory

...etc.
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Challenges
• Community Perspective

– Life-cycle costs of applications are increasing
• Require the combined use of software developed by different groups
• Difficult to leverage expert knowledge and advances in subfields
• Difficult to obtain portable performance

• Individual Scientist Perspective
– Too much energy focused on too many details

• Little time to think about modeling, physics, mathematics
• Fear of bad performance without custom code
• Even when code reuse is possible, it is far too difficult

• Our Perspective
– How to manage complexity?

• Numerical software tools that work together
• New algorithms (e.g., interactive/dynamic techniques, algorithm 

composition)
• Multi-model, multi-physics simulations
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Why Use Components?

• Promote software reuse
– “The best software is code you don’t have to write.” 

[Steve Jobs]

• Reuse, through cost amortization, allows
– thoroughly tested code
– highly optimized code
– developer team specialization

• Also reuse of skills, practice, and design

Hero programmer producing single-purpose, 
monolithic, tightly-coupled parallel codesX

[Thanks to Craig Rasmussen (LANL) for the base of this slide.]
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What are differences between 
objects and components?

• More similar than different
– Object: a software black box
– Component: object +

• OO techniques are useful for building individual components by 
relatively small teams; component technologies facilitate sharing of 
code developed by different groups by addressing issues in
– Language interoperability 

• Via interface definition language (IDL)

– Well-defined abstract interfaces 
• Enable “plug-and-play”

– Dynamic composability
• Components can discover information about their environment (e.g., interface 

discovery) from framework and connected components

• Can easily convert from an object orientation to a component 
orientation
– Automatic tools can help with conversion (ongoing work by C. Rasmussen 

and M. Sottile, LANL)
• For more info: C. Szyperski, Component Software: Beyond Object-

Oriented Programming, ACM Press, New York, 1998
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CCA History and Participants
• 1998: CCA Forum originated

– Participation from researchers who were exploring one-to-one software 
interfacing in the DOE ACTS Toolkit program

– Open to everyone interested in HPC components
– See http://www.cca-forum.org
– Active CCA Forum participants include

• ANL - Lori Freitag, Kate Keahey, Jay Larson, Lois McInnes, Boyana Norris

• Indiana Univ. - Randall Bramley, Dennis Gannon

• LANL - Craig Rasmussen, Matt Sotille

• LLNL - Scott Kohn, Gary Kumfert, Tom Epperly

• ORNL - David Bernholdt, Jim Kohl 

• PNNL - Jarek Nieplocha, Theresa Windus

• SNL - Rob Armstrong, Ben Allan, Curt Janssen, Jaideep Ray

• Univ. of Utah - Steve Parker

• And others as well …

• 2001: Center for Component Technology for Terascale
Simulation Software (CCTTSS) founded
– Support from the DOE SciDAC Initiative
– CCTTSS team is a subset of the CCA Forum
– Leader: Rob Armstrong (SNL)
– See http://www.cca-forum.org/ccttss
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CCTTSS Multi-Pronged Approach

• HPC component specification and framework –
coordinator Scott Kohn (LLNL)
– Unified reference framework implementation targeting both SPMD and 

distributed environments
– Tools for language interoperability via a Scientific Interface Definition 

Language (SIDL)

• Suite of scientific components – coordinator Lois Curfman 
McInnes (ANL)
– Linear and nonlinear algebra, optimization, mesh management, scientific data, 

visualization, steering, fault tolerance, scientific application domains, etc.

• Parallel data redistribution – coordinator Jim Kohl (ORNL)
– Model coupling, visualization

• Applications integration – coordinator David Bernholdt (ORNL)
– General outreach to the scientific community
– Close feedback loop for users/developers of CCA technology
– Collaborate with climate and chemistry applications domains as well as other 

groups

CCTTSS Leader: Rob Armstrong (SNL)
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Requirements for a High-Performance 
Component Architecture

• Simple/Flexible
– to adopt
– to understand
– to use

• Support a composition mechanism that does 
not impede high-performance component 
interactions

• Permit the SPMD paradigm in component form
• Meant to live with and rely on other

commodity component frameworks to provide 
services ...

– e.g., JavaBeans, CORBA, …
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Existing component architecture standards such as 
CORBA, Java Beans, and COM  do not provide support for 
parallel components.

sec110-6 10 -4
10

-1

CORBA/JavaCCAMPI

Latency
between
components

Goals of the Common 
Component Architecture (CCA)

• Desire to build scientific applications by 
hooking together components

• DOE Common Component Architecture (CCA) 
provides a mechanism for interoperability of 
high-performance components developed by 
many different groups in different languages 
or frameworks. 
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CCA Approach
• CCA specification dictates a basic set of 

interfaces (and corresponding behaviors) that 
components should implement to be CCA 
compliant. 
– Ports define the connection model for 

component interactions
– Provides/Uses design pattern

• Components are manipulatable in a 
framework.

• CCA specification doesn’t dictate frameworks 
or runtime environment.
– Create components that are usable under 

a variety of frameworks 
– Provide a means for discovering interfaces
– Specifically exclude how the components 

are linked; that is the job of a framework
– Provide language-independent means for 

creating components (via SIDL)

Component-Based
Scientific Application

Discretization
Engine

Implicit Solve

Visualization

Ports

Link

ANL

SNL

LLNL

PNNL

LANL

UU

IU

ORNL

framework
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A A A A

B

MPI

MPI

Process

MPI application using CCA for interaction between 
components A and B within the same address space 

Adaptive mesh
component
written by user1

Solver component
written by user2

Direct
Connection

supplied by
framework at 

compile/runtime

CCA Concept of 
SPMD Components

Proc1 Proc2 Proc3 etc...

BBB
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CCA Collective Port Modularizes
Processor/Data Decomposition

parallel
visualization component

collective port
connecting M procs 
with N procs

Combining previous parallel component with another
parallel component in a different framework 

container composed of 
mesh and solver 

components
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CCA References

• Web sites
– CCA Forum

• http://www.cca-forum.org
– Center for Component Technology for Terascale Simulation 

Software (CCA SciDAC Center)
• http://www.cca-forum.org/ccttss

– Sample component software and applications
• http://www.cca-forum.org/cca-sc01

• Introductory paper
– R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L.

McInnes, S. Parker, and B. Smolinski, Toward a Common 
Component Architecture for High-Performance Scientific 
Computing, Proceedings of the High-Performance Distributed 
Computing Conference, pp. 115-124, 1999.
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More CCA Papers
• B. Norris, S. Balay, S. Benson, L. Freitag, P. Hovland, L. McInnes, and B. Smith, 

Parallel Components for PDEs and Optimization: Some Issues and 
Experiences, preprint ANL/MCS-P932-0202, February 2002, Parallel Computing 
(to appear).

• B. Allan, R. Armstrong, A. Wolfe, J. Ray, D. Bernholdt, and J. Kohl, The CCA 
Core Specification in a Distributed Memory SPMD Framework, August 
2001, Concurrency and Computation: Practice and Experience (to appear).

• T. Epperly, S. Kohn, and G. Kumfert. Component Technology for High-
Performance Scientific Simulation Software, Proceedings of the 
International Federation for Information Processing’s Working Conference on 
Software Architectures for Scientific Computing, 2000.

• S. Parker, A Component-based Architecture for Parallel Multi-Physics 
PDE Simulations, Proceedings of the 2002 International Conference on 
Computational Science (to appear).

• M. Sottile and C. Rasmussen, Automated Component Creation for Legacy 
C++ and Fortran Codes, Proceedings of the First International IFIP/ACM 
Working Conference on Component Deployment, June 2002 (submitted). 

• R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B. Temko, 
and M. Yechuri, A Component Based Services Architecture for Building 
Distributed Applications, Proceedings of High Performance Distributed 
Computing, 2000.

• K. Keahey, P. Beckman, and J. Ahrens, Ligature: A Component Architecture 
for High-Performance Applications, International Journal of High-
Performance Computing Applications, 2000.
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Related Work

• N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. 
Darlington, Optimization of Component-based Applications 
within a Grid Environment, Proceedings of SC2001.

• C. René, T. Priol, and G. Alléon, Code Coupling Using Parallel 
CORBA Objects, Proceedings of the International Federation for 
Information Processing’s Working Conference on Software 
Architectures for Scientific Computing, 2000.

• E. de Sturler, J. Hoeflinger, L. Kale, and M. Bhandarkar, A New 
Approach to Software Integration Frameworks for Multi-
physics Simulation Codes, Proceedings of the International 
Federation for Information Processing’s Working Conference on 
Software Architectures for Scientific Computing, 2000.

• R. Sistla, A. Dovi, P. Su, and R. Shanmugasundaram, Aircraft 
Design Problem Implementation Under the Common Object 
Request Broker Architecture, Proceedings of the 40th

AIAA/ASME/ASCH/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, 1999.
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Software for Nonlinear PDEs and 
Related Optimization Problems

• Goal:  For problems arising from PDEs, support the 
general solution of F(u) = 0

User provides:
– Code to evaluate F(u)
– Code to evaluate Jacobian of F(u) (optional)

• or use sparse finite difference (FD) approximation
• or use automatic differentiation (AD)

– AD support via collaboration with P. Hovland and B. Norris (see 
http://www.mcs.anl.gov/autodiff)

• Goal:  Solve related optimization problems, generally    
min f(u), u < u < u  , c < c(u) < c
Simple example: unconstrained minimization: min f(u)

User provides:
– Code to evaluate f(u)
– Code to evaluate gradient and Hessian of f(u) (optional)

• or use sparse FD or AD

l lu u
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What are the algorithmic needs 
of our target applications? 

• Large-scale, PDE-based applications
– multi-rate, multi-scale, multi-component 

• Need
– Fully or semi-implicit solvers
– Multi-level algorithms
– Support for adaptivity
– Support for user-defined customizations (e.g., 

physics-informed preconditioners, transfer 
operators, and smoothers)

Reference: Salishan presentation by D. Keyes
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Newton’s Method
Nonlinear equations: Solve  f(u) = 0, where f: R      R

f’(u    )  δ u    =  -f (u )
u   =  u    +  δ u

Unconstrained minimization: min f(u), where f: R  R

f(u    )  δ u =  - f (u    )
u   =  u    +  δ u

• Can achieve quadratic convergence when sufficiently close to solution
• Can extend radius of convergence with line search strategies,

trust region techniques, or pseudo-transient continuation.

l-1l

l

l

l-1 l-1

l-1l l
ll-1 l-12

n n

n

Solve approximately 
with preconditioned 
Krylov method

Solve approximately 
with preconditioned 
Krylov method
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Interface Issues
• How to hide complexity, yet allow 

customization and access to a range of 
algorithmic options?

• How to achieve portable performance?
• How to interface among external tools?

– including multiple libraries developed by different 
groups that provide similar functionality (e.g., linear 
algebra software)

• Criteria for evaluation of success
– efficiency (both per node performance and scalability)
– usability
– extensibility
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Two-Phased Approach

• Phase 1
– Develop parallel, object-oriented numerical libraries

• OO techniques are quite effective for development with 
a moderate sized team

• Provide foundation of algorithms, data structures, 
implementations

• Phase 2
– Develop CCA-compliant component interfaces 

• Leverage existing code
• Provide a more effective means for managing 

interactions among code developed by different groups
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Parallel Numerical Libraries: PETSc and TAO

• PETSc: Portable, Extensible Toolkit for Scientific 
Computation
– S. Balay, K. Buschelman, B. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, 

B. Smith, H. Zhang
– http://www.mcs.anl.gov/petsc
– Targets the parallel solution of large-scale PDE-based applications
– Begun in 1991, now over 8,500 downloads since 1995 

• TAO: Toolkit for Advanced Optimization
– S. Benson, L. C. McInnes, J. Moré, J. Sarich
– http://www.mcs.anl.gov/tao
– Targets the solution of large-scale optimization problems
– Begun in 1997 as part of DOE ACTS Toolkit

• Both are freely available and supported research toolkits
– Hyperlinked documentation, many examples
– Usable from Fortran 77/90, C, and C++

• Both are portable to any parallel system supporting MPI, including
– Tightly coupled systems

• Cray  T3E, SGI Origin, IBM SP, HP 9000, Sun Enterprise

– Loosely coupled systems, e.g., networks of workstations
• Compaq, HP, IBM, SGI, Sun
• PCs running Linux or Windows
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Some Related Work in Numerical Libraries

• Krylov methods and preconditioners (for large, sparse problems)

– Trilinos – Heroux et al. http://www.cs.sandia.gov/Trilinos

– Parpre – Eijkhout and Chan http://www.cs.utk.edu/~eijkhout/parpre.html

– Hypre – Cleary et al. http://www.llnl.gov/casc/hypre

– SPARSKIT, etc. – Saad www.cs.umn.edu/~saad

• Nonlinear solvers
– KINSOL – Hindmarsh http://www.llnl.gov/casc/PVODE

– NITSol – Walker and Pernice
• Optimization software

– Hilbert Class Library - Gockenback, Petro, and Symes
http://www.trip.caam.rice.edu/txt/hcldoc/html

– OPT++ - Meza http://csmr.ca.sandia.gov/projects/opt/opt++.html

– DAKOTA - Eldred et al. http://endo.sandia.gov/DAKOTA

– COOOL - Deng and Gouivera http://coool.mines.edu

– Veltisto - Biros and Ghattas http://www.cs.nyu.edu/~biros/veltisto

(Not an exhaustive list)
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Programming Model
• Goals

– Portable, runs everywhere
– Performance
– Scalable parallelism

• Approach
– Distributed memory, “shared-nothing”

• Requires only a compiler (single node or processor)
• Access to data on remote machines through MPI

– Can still exploit “compiler discovered” parallelism on 
each node (e.g., SMP)

– Hide within parallel objects the details of the 
communication

– User orchestrates communication at a higher 
abstract level than message passing
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Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Others

Indices Block Indices Stride Others

Index Sets

Vectors

Line Search Trust Region

Newton-based Methods
Others

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others

Preconditioners

Euler Backward
Euler

Pseudo Time
Stepping Others

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Others

Krylov Subspace Methods

Matrices

PETSc Numerical Libraries

Distributed Arrays

Matrix-free
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Semi-smooth Methods Others

Complementarity

Newton Trust Region GPCG Interior Point LMVM KT Others

Bound Constrained Optimization

TAO Solvers

• PETSc (initial interface)
• Trilinos (SNL - new capability via ESI –

thanks to M. Heroux and A. Williams)
• Global Arrays (PNNL – under development by 

J. Nieplocha et al.)
• Etc. 

Levenberg
Marquardt

Gauss-
Newton 

LMVM Levenberg Marquardt
with Bound Constraints Others

Nonlinear Least Squares
LMVM with

Bound Constraints

Line Search Trust Region

Newton-based Methods Limited Memory 
Variable Metric 
(LMVM) Method

Unconstrained Minimization
Conjugate Gradient Methods 

Fletcher-
Reeves

Polak-
Ribiére

Polak-
Ribiére-Plus

Others

TAO interfaces to external libraries for 
parallel vectors, matrices, and linear solvers
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PETSc codeUser code

Nonlinear PDE Solution

AD-generated code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0

Application Driver

• Automatic Differentiation (AD): a technology for automatically augmenting 
computer programs, including arbitrarily complex simulations, with statements for 
the computation of derivatives, also known as sensitivities.
• AD Collaborators: P. Hovland and B. Norris (http://www.mcs.anl.gov/autodiff)
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Application
Initialization

Post-
Processing

PETSc Solve
F(u) = 0

Nonlinear PDE Solution

PETSc codeUser code AD-generated code

Nonlinear Solvers (SNES)

Main Routine

Parallel Jacobian
assembly

Global-to-local 
scatter of ghost  values

Seed matrix
initialization

Local Jacobian
computation

Global-to-local 
scatter of ghost  values

Parallel function
assembly

Local Function 
computation
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Using AD with PETSc
Global-to-local 

scatter of ghost  values

Parallel function
assembly

Local Function 
computation

Parallel Jacobian
assembly

Global-to-local 
scatter of ghost  values

Local Jacobian
computation

Local Function 
computation

ADIFOR or ADIC

Local Jacobian
computation

Script file

Seed matrix 
initialization

• Fully automated for structured meshes
• Currently manual setup for unstructured    
meshes; can be automated

Current status:
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Hybrid FD/AD Strategy 
for Jacobian-vector Products

• FD
– F’(x) v = [ F(x+hv) - F(x)] / h

– costs approximately 1 
function evaluation

– challenges in computing 
the differencing 
parameter, h, since we 
must balance truncation 
and round-off errors

• AD
– costs approximately 2 

function evaluations
– no difficulties in 

parameter estimation

• Hybrid FD/AD
– switch from FD to AD 

when  ||F|| / ||F || < δ
0
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Time for Nonlinear Solution: Hybrid FD/AD, s=1.e−5

8 processors 
16 processors
32 processors
64 processors

Euler model; 
transonic flow over 
ONERA M6 wing
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Some Experience in One-to-one Interfacing

• Linear solvers
– AMG http://www.mgnet.org/mgnet-codes-gmd.html

– BlockSolve95 
http://www.mcs.anl.gov/BlockSolve95

– ILUTP http://www.cs.umn.edu/~saad/

– LUSOL  http://www.sbsi-sol-optimize.com

– SPAI  http://www.sam.math.ethz.ch/~grote/spai

– SuperLU  http://www.nersc.gov/~xiaoye/SuperLU

• Optimization software
– TAO  http://www.mcs.anl.gov/tao

– Veltisto  http://www.cs.nyu.edu/~biros/veltisto

• Linear solvers
– PETSc http://www.mcs.anl.gov/petsc

• Mesh and discretization 
tools
– Overture http://www.llnl.gov/CASC/Overture

– SAMRAI http://www.llnl.gov/CASC/SAMRAI

– SUMAA3d http://www.mcs.anl.gov/sumaa3d

• ODE solvers
– PVODE http://www.llnl.gov/CASC/PVODE

• Others
– Matlab  http://www.mathworks.com

– ParMETIS 
http://www.cs.umn.edu/~karypis/metis/parmetis

• Optimization software
– OOQP http://www.cs.wisc.edu/~swright/ooqp

– APPSPACK
http://cmsr.ca.sandia.gov/projects/apps.html

Between TAO and …

Between PETSc and …



37

Common Interface Specification

• Many-to-Many
couplings require 
Many 2 interfaces
– Often a heroic effort to 

understand details of both 
codes

– Not a scalable solution

• Common Interfaces: 
Reduce the Many-to-
Many problem to a 
Many-to-One problem
– Allow interchangeability and 

experimentation
– Difficulties

• Interface agreement
• Functionality limitations
• Maintaining performance

SUMAA3d

DAs

GRACE

Overture Trilinos

ISIS++

PETSc

D
a
t
a

E
S
I

SUMAA3d

DAs

GRACE

Overture
Trilinos

ISIS++

PETSc

Mesh management
libraries

Linear solver
libraries

Others …

Others …
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Current Interface 
Development Activities

CCA Forum Scientific Data 
Components Working 
Group

• Basic Scientific Data 
Objects
– Lead: David Bernholdt, ORNL

• Unstructured Meshes
– Lead: Lori Freitag, ANL
– in collaboration with TSTT 

(SciDAC ISIC)
• Structured Adaptive Mesh 

Refinement
– Lead: Phil Colella, LBNL
– in collaboration with APDEC 

(SciDAC ISIC)

Other Groups

• Equation Solver Interface 
(ESI)
– Lead: Robert Clay (Terascale)
– Predates CCA, but moving 

toward CCA compliance
• MxN Parallel Data 

Redistribution
– Lead: Jim Kohl, ORNL
– Part of CCTTSS MxN Thrust

• Quantum Chemistry
– Leads: Curt Janssen, SNL; 

Theresa Windus, PNNL
– Part of CCTTSS Applications 

Integration Thrust
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Optimization
ui+1 = ui + ααααs …

Optimization
ui+1 = ui + ααααs …

VisualizationVisualization

Linear Solver
H s = g

Linear Solver
H s = gH

g
s

g H fui+1 uo

function
solution
Hessian
gradient
coordinates
connectivity
step direction

f(u)
u 
H
g 
x 
c 
s

Compute min f(u)

Unconstrained Minimization Example Using 
CCA Components

CCAFFEINE 
Framework

Trilinos
PETScE

S
I Others …

DriverDriver

• CCAFFEINE – Common Component Architecture Fast Framework
Example in Need of Everything

• reference framework under development by B. Allan et al. (SNL)
• http://www.cca-forum.org/cafe.html

• TAO – Toolkit for Advanced Optimization
• http://www.mcs.anl.gov/tao

• Optimization component developers:  S. Benson, L. C. McInnes, 
B. Norris, and J. Sarich

Local Physics,
Discretization

Local Physics,
Discretization

Data 
Redistribution

Data 
Redistribution
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Component Wiring Diagram

• Black boxes: components
• Blue boxes: provides ports
• Gold boxes: uses ports

Using GUI tool within CCAFFEINE framework
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Performance on a Linux Cluster

• Newton method with line 
search

• Solve linear systems with 
the conjugate gradient 
method and block Jacobi
preconditioning (with no-fill 
incomplete factorization as 
each block’s solver, and 1 
block per process)

• Negligible component 
overhead; good scalability

• Total execution time for a minimum surface minimization problem using a 
fixed-sized 250x250 mesh.
• Dual 550 MHz Pentium-III nodes with 1 G RAM each, connected via Myrinet
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CCA Compliance in TAO
• Paradigm shift; both TAO and the application become 

components
– Each is required to provide a default constructor and to 

implement the CCA component interface
• contains one method: “setServices” to register ports

– All interactions between components use ports
• Application provides a “go” port and uses “taoSolver” port
• TAO provides a “taoSolver” port

– There is no “main”  routine
• Status

– TAO-1.4, released April 2002, includes CCA component 
interfaces

– Ongoing work with T. Windus (PNNL) and C. Janssen 
(SNL) on CCA-based chemistry applications that involve 
optimization
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Sample CCA Components and Applications

• Developed by CCA working group 
for demonstration at SC01

• 4 applications using CCAFFEINE
– Unconstrained minimization problem on a 

structured mesh 
– Time-dependent PDE on an unstructured mesh 
– Time-dependent PDE on an adaptive structured 

mesh 
– Ping-pong MxN 

• More than 30 components
• Many components re-used in 3 apps
• Leverage and extend parallel 

software developed at different 
institutions

– including CUMULVS, GrACE, MPICH, ODEPACK, 
PAWS, PETSc, PVM, TAO, and Trilinos

• Source code and documentation 
available via

– http://www.cca-forum.org/cca-sc01
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Component Re-Use

• Various services in CCAFFEINE
• Optimization solver

– TAOSolver
• Integrator

– IntegratorLSODE
• Linear solvers

– LinearSolver_Petra
– LinearSolver_PETSc

• Data description
– DADFactory

• Data redistribution
– CumulvsMxN

• Visualization
– CumulvsVizProxy

Component interfaces 
to parallel data 
management and 
visualization tools

Component interfaces 
to numerical libraries, 
all using ESI
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Summary
• Object-oriented techniques have been effective in enabling 

individual libraries for high-performance numerics to explore of 
trade-offs in 
– Algorithms, data structures, data distribution, etc.

• The CCA Forum is developing component technology specifically 
targeted at high-performance scientific simulations 
– Addressing issues in language interoperability, dynamic

composability, abstract interfaces, parallel data redistribution, etc. 
– Aiming to enable the exploration of trade-offs in the broader context 

of multi-disciplinary simulations that require the combined use of 
software developed by different groups

• We have a solid start through an interdisciplinary, multi-
institution team
– Open to everyone interested in high-performance scientific 

components (see http://www.cca-forum.org for info on joining the 
CCA mailing list) 

• Lots of research challenges remain!
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One Challenge:
Interfaces are central

• The CCA Forum participants do not pretend to be 
experts in all phases of computation, but rather 
just to be developing a standard way to exchange 
component capabilities.

• Medium of exchange: interfaces
– Need experts in various areas to define sets of 

domain-specific abstract interfaces
• scientific application domains, meshes, discretization, 

nonlinear solvers, optimization, visualization, etc.

• Developing common interfaces is difficult
– Technical challenges
– Social challenges

This 
means 

you!

Many, many additional research issues remain.
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CCA: http://www.cca-forum.org
PETSc: http://www.mcs.anl.gov/petsc

TAO:  http://www.mcs.anl.gov/tao

More Information


